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1. Summary of work performed
0) Overview: during the period of this contract research was p.

ongoing in several areas: stable array processing (with A. Steele);
two-dimensional reconstruction algorithms (with M. Fiddy); extensions of ON

the concept of cross-entropy distance measures (with L. Jones); and the
beginning of new work on array processing in more complicated acoustic
environments (with NORDA personnel). Other work, by Jones and by J.
Benedetto, was partially supported by this contract (title pages enclosed).

1) The array processing work (with A. Steele) In collaboration
with Dr. A. Steele I have developed a "sector- focused stability" method
for stabilizing nonlinear methods for localization and resolution. This
work was performed at DRCS, Salisbury, South Australia (with partial
support from the DOD of Australia) and at the University of Lowell, under
subcontract. During the period of the present contract we considered the 0
destabilizing effects of short averaging times; a paper on this is in
preparation-

2) Two-dimensional reconstruction (with M. Fiddy) We
considered the problem of reconstruction of two-dimensional distribution
functions from spectral values as a problem of obtaining finite-parameter
approximations to optimal Wiener filters. The first paper on this subject
has just been accepted by Inverse Problems (galleys enclosed) and a
second, presenting illustrations, is in preparation.

3) Extension of cros--entropy distances (with L, Jones) Work
of L. Jones on extension of cross-entropy distance measures has been
applied to obtain new algorithms for incorporating a positivity constraint
in nonlinear reconstruction. A paper on this subject is in preparation (a
first draft is enclosed). a

4) Array processing in a complex acoustic environment (with
C. Feuillade, D. DelBalzo et al, NORDA) Standard linear and nonlinear
array processing methods cannot be applied unaltered for range, depth and
bearing estimation in shallow water situations (with, for example, a .

normal mode model for the propagation). We have begun to develop new
methods for incorporating propagation models in linear and nonlinear array
processing. C. Byrne spent a week at NORDA in June 87, supported partly by
NORDA; a paper on this work is in progress (first draft enclosed). b
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2. Background
A previous contract with ONR, for three years and through Catholic -

University, was terminated at the end of two years rather than continue
the subcontract arrangement to Univ. of Lowell. The present contract
supported the wrapping up phase of the earlier work with A. Steele and
with M. Fiddy, as well as the beginning of new efforts with L. Jones and
with NORDA personnel (C. Feuillade and D. DelBalzo). In addition, John
Benedetto was supported for two weeks in his investigation of the use of -

wavelets and Gabor transforms to represent transient signals.
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Work supported by ONR Contract N00014-K-87-0394 (Period: May
87-Sept87)

,-,

Papers accepted for publication:
1. "Images as power specta; reconstruction as Wiener filter

approximation," in Inverse Problems (with M. Fiddy);

PaDers in Dreparation:
1. "Stabilizing eigenvector methods of source IocalizutJcr and

resolution for the case of white noise and short averaging time,'
(with A. Steele);

2. "On entropy critieria for solving inverse problems with positivity
constraints," (with L. Jones);

3. "Stable data adaptive matched field methods for ambiguity reduction
in source parameter estimation," (with D. DelBalzo and C. Feuillade);

4. "Reconstruction as filter function approximation: some algorithms,"
(with M. Fiddy).

Papers by other authors receiving partial support from this contract:
1 1. "Approximation-theoretic derivation of logarithmic entropy

principles for inverse problems and unique extension of the maximum
entropy principle to incorporate prior knowledge," by Lee Jones
(accepted by SIAM J. Applied Math.);

2. "Gabor representations and wavelets," by John Benedetto.

Talks:
1. "Sector-focused stability for high resolution array processing," IEEE

Workshop on Underwater Acoustic Signal Processing, Univ. of Rhode
Island, Sept. 87 (with A. Steele).
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Reconstruction as a Wiener filter approximation

Images as power spectra; reconstruction as a Wiener filter
approximation

Charles L Byrnet and Michael A Fiddy+
t Departmcnt of Mathcmaties. University of Lowell. Lowell MA 01854. USA

D cpartncnt of Electrical Engineeriog. Univcrsity of Lowell. Lowell MA 01854. USA

Received I0 August 1987, in final form 17 Septemher 1987

Abstract. The problem of reconstructing a non-negative f.rction from finitely many
values of its Fourier transform is a problem of approximating one function by another and.
as such. is analogous to the design of finite-impulse-response approximations to the
Wiener filter. Using this analogy we obtain reconstruction methods that are computation-
all), simpler approximations of entropy-based procedures. Our linear estimators allow for
the inclusion of prior information about oversampling rate, i.e. support information, as
well as other prior knowledge of the general shape of the object. Our nonlinear methods,
designed to recover spiky objects. make use of prior information about non-uniformity in
the background to avoid bias in the estimation of peak locations.

1. Introduction

The problem of reconstructing a non-negative function f(a, b) of two real variables
from finitely many values of its Fourier transform (Fr) arises in a number of
applications. These include recovering an image or object distribution from its
spectrum, a power spectrum from its autocorrelation function, a distribution of energy
in bearing from cross-sensor correlations or a bivariate probability density from its
characteristic function. In many cases of interest the function f(a, b) is non-negative
and we shall make that assumption here. The problem of limited data can arise for a
variety of reasons: to remove the effects of a known convolution-filter degradation
one can divide by the filter transfer function in the spectral domain, but must avoid
dividing by small quantities; in the case of sensor array processing one is limited to
spatial separations provided by the array geometry.

Because the data are finite there will always be infinitely many reconstructions
consistent with the data values. Some of these reconstructions will be reasonably
good, while others will not; the data constraints, by themselves, will not automatically
lead to a good reconstruction unless the number of data values is large. There are
several methods based on minimising some cost function, such as entropy; one
problem with such approaches is that it is not always clear just how the resulting
reconstruction is related to the correct answer. The methods we present here are
based on the theory of best approximation in Hilbert space and make clear how the .,
reconstruction is related to the original, unknown, correct object functic .
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2 C L Byrne and M A Fidd)'

In order to obtain a good reconstruction it is necessary to incorporate additional
information about the function being reconstructed; in some cases support infor-
mation is used or positivity is enforced; in others upper and lower bounds are

* employed. In a number of methods one uses a prior estimate of f(a, b); this is done in
cross-entropy minimisation and it has been shown that the Burg maximum entropy
method employs (tacitly) a uniform prior estimate 11]. In earlier work [1] work we
extended the Burg method for the one-dimensional case to incorporate other prior
information and considered numerical examples; our purpose here is to provide a
theoretical justification for that procedure, based on analogy with the design of
approximate Wiener filters. This approach allows for generalisation to higher dimen-
sions, which we also consider. We present both linear and nonlinear methods.

One of the difficulties with methods that incorporate prior knowledge is that it is
not always clear what the prior estimate is estimating. As our development here
reveals, the role of the prior estimate is different in the linear and the nonlinear
methods. The chief virtue of the Wiener filter design approach is that it gives us a clear
picture of the role being played by the prior estimate. Loosely speaking, in the case of
linear methods the prior estimate is an estimate of the whole function associated with
the data, including any noise background component, while for nonlinear methods (to
be used mainly for high-resolution reconstruction of spiky objects) the prior should
estimate the smooth component only; linear methods such as superresolution become
unstable when the prior estimates only the support-limited object and ignores any
noise background, while nonlinear methods that employ a uniform prior estimate.
such as Burg's maximum entropy [1], become unstable when the background is non-
uniform.

In reference [1] we presented methods for the reconstruction of ID objects from
limited Fr data. Here we extend these methods to 2D objects and present a unified
interpretation of both cases in terms of the finite-impulse-response approximation to a
Wiener filter; in this way we are led naturally to the particular Hilbert spaces used
earlier [1], where they may have seemed somewhat ad hoc.

It is important to note that, while the Wiener fil;er and its finite-impulse-response
approximations are used to motivate the reconstruction methods presented here. we
do not employ a statistical model for the functions being reconstructed.

Throughout the paper we denote by f(a, b) a non-negative function supported on
the square JalI_<"r, . The Fourier series representation for the function f on jai,
lb <;r is

f(a, b)= 2 _ F(m, n) exp(inia + inb) (1.2)

We assume that we have the data F(m, n) for inl-f<M. lnJN, from which we are to
reconstruct (estimate) f(a, b). A commonly used estimate is the truncated Fourier
series (also sometimes referred to as the 'discrete Fourier transform' because the
summation replaces the integration); for la , bl-r define the DFr(a, b) to be

'S..

Dorr(a, b) = F(m, n) exp(ina + inb). (1.2)
-M -M

Note that the D- is defined here as a function of two continuous variables; one
sometimes sees 'DrT' used to denote a sampled version of (1.2).

I



Reconistruction as a Wiener filer pproximation 3%

In many applications the oF-r will be unsatisfactory, particularly if the function f is
supported on a smaller interval within [-,r, .r] x [-.-r. -r]. or if f is a spiky function
and the number of data values is not large. The FTr is consistent with the original
data, in the sense that the Fourier series of Dt- (a. b) has the data values in the proper
positions, but may fail to be non-negative or to resolve closely spaced peaks. The
objective of high-resolution processing is to employ prior information to obtain better
reconstructions than the DFT.

For completeness we discuss the Wiener filter and its approximations, for the ID
case (for notational simplicity), and then discuss the use of Wiener filter approxima-
tion for the reconstruction of ID functions. We then turn to the 2D case, the main
differences stemming from difficulties in extending the concept of 'causal filter'.
Finally, we discuss briefly the connections between these methods and those based on
the minimisation of cross-entropy.

2. Wiener filtering: the one-dimensional case

The Wiener filter [2] is a procedure designed to produce as output an estimate of
'signal' when presented with input 'signal plus noise'. Assume that (s(n)}, {u(n)} are
independent, mean-zero stationary random sequences with autocorrelation functions
r.(m), r,,,,(m) and power spectra R,,(a), R,(ca). respectively, with al<'r; the sequence
{r,,(m)) are the Fourier coefficients of R,,(a), and similarly for R,,,(a). The Wiener
filter is a doubly infinite sequence {h(k)) designed as follows: given the random
sequence x(n) = s(n) + u(n) as input and y,(n) as output, where

y(n)= h(k) x(n - k) - =/?<Cc (2.1)

select {h(k)) so as to minimise the expected mean square error, EJs(nt)-y(n) 2 . The
well known result is that the optimal choice of sequence {h(k)} is the sequence of .,.
Fourier coefficients of the function H(a) = R,,(a)/R,(a), where R,,(a) = R.,(a) +
R.,(a), and H(a) is defined io bc zcro i' R,,--0 r"

The Wiener filter is not a causal filter, since we do not have h(k) = 0 for k<0. We
can ask for the causal filter {g(k)) (g(k) = 0, k<O) that best approximates the Wiener
filter, or, going further, the finite-impulse-response filter {d(k)} (d(k)=0 unless
K<k<L) that best approximates the Wiener filter. To obtain these optimal approxi-
mations we minimise the expected mean square difference between the outputs of the
Wiener filter and the approximation. These optimisation problems are equivalent to
best approximations in a Hilbert space with weighted inner product.

To obtain the best causal approximation to the Wiener filter we minimise the e
distance

". H(a) - g(k) exp(ika) R,,(a) da (2.2)

over all causal sequences {g(k)}. Similarly, to obtain the optimal finite-impulse-
response filter with support K--k<L we minimize the error

H(a) d(k) exp(ikc R, ()da (2.3)
-R, H(a) da

'K-

• :,.... .... -... .... ... .... ... .._ .. . . .- .



4 C L Byrne and M A Fiddy-

over all finite sequences {d(k)). From the orthogonality principle in Hilbert space [3]
it follows that the optimal {g(k)} and (d(k)) must satisfy the following systems of
linear equations:

r,(m = g(k) r,(m - k) m 0 (2.4)

I.1

r,,(n) = d(k) r,,.(n - k) k< tm< L (2.5)

Equations (2.4) are the discrete Wiener-Hopf equations. Having sohved these equa-
tions we write, for lul <.

G(a) = g(k) exp(ika) Dk(a) = d(k) exp(ika) (2.6)

kL. L-K

It is worth noting that the best finite impulse-response filter approximating g),
for O -K_-k<L, is the (d(k)} above; that is, this choice of d(k) minimises the
approximation error

G(a)- 2 d(k) exp(ika) da (2.7)0
.k-K

viewed as a function of the d(k). Therefore, the function D'(a) is simultaneously the
best approximation, of its form, of H(a) and of G(a), in the Hilbert space with inner

product weighted by R,,(a).
The error (2.3) is of interest for the reconstruction problem because, for the case

0-<K, a non-negative function (H(a)) is being approximated by a necessarily non-real
trigonometric polynomial, in a Hilbert space with weighted inner product. As shown
in reference 11], this is precisely what happens in the maximum entropy method (t'EM)
of Burg [4, that the finite pol nomial also approximates G(a) is implicit in the NEM in
the spectral facorisation [5].

In the nrxt section we employ these approximation theoretic aspects of Wiener

filter design to obtain reconstruction methods.

3. Wiener filter approximation and reconstruction: ID case

We cionsn(2.re the dcree in eon . H-negative function f(a), ea-

from finitely many values of its Fourier coefficients, F(in), Infl<M. We present first
linear methods and then nonlinear ones.

3.1. Linear methods

Assume that we have a prior estimate of the broad features of f(a), in the form of a
non-negative function p(a), such that p(a) = 0 only iff(a) = 0; of course, in practic we

will not know where the support of f is, exactly, so p(a) should be positive
everywhere. A rough idea of the support off can be indicated by concentrating p in

that region. Let p play the role of R,,, f the role of R.,; we are effectively assuming
that, for some >0, we havep(a) f(a) for all a, and that (apart from the scaling)p(a)

• .. ,.. . .. approximatio error. -... .. .. .. . . ., .... .. ... . .. . ... .
., .J - ;"-. , , .- , , . . ,. , .% .,, ,,., . . . . - ,. . ,. .... ..,. . ,- .- . . . . . . .. . . .... ..L
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Reconstructioni as a lWiener filter approximation 5

overestimates f(a) everywhere; the scalc factor cancels in the end, so is not needed.
Then H =fp is approximated by the polynomial D'!A, and the equations that must be
solved are

d(k) P(ni - k) - A1 mnM (3,1) ,
F(z) -

where P(m) are the Fourier coefficients of p(a). These equations arise when .e J.,
minimise the approximation error

f f(a) - (a) d(k) exp(ika) p(a) do (3.2)
L - - Af

as a function of the d(k). The resulting estimator of f(a) is the ro [6], so called
because of its form: r

PrFT(a) =p(a)D-,(a). (3.3)

If the prior estimate p(a) = constant, jai(<:,, then d(k) = F(k) and the rDon reduces to
the Ofr.

If the data are oversampled relative to the actual support of f(a) then including
information about this support in the p(a) can result in significant improvement, so
long as regularisation to avoid sensitivity to noise is used [I]. Note that, although the
PDn is not necessarily non-negative, it is data consistent; it extrapolates values of
F(m) beyond the data window.

3.2. Nonlinear methods
We assume now that f(a) consists of two components, a discrete (delta functions)
component, which is the object of interest, and a background (continuous) compo-
nent, about which we have some prior information; let p(a) be our non-negative prior
estimate of the background component. Letting p(a) play the role of R,, and f(a) the
role of R,, we see that H =p/f; for the filter function D' to remove from R,, =f the
component associated with R,,=f-p it must place nulls near the values of the
support of the discrete component. We perform the calculations to obtain the D and
then examine the nulls. We have some freedom in the choice of the K and L; two
choices are of particular importance: (i) M/2> L = - K; (ii) L = Al. K = 0. The first has
as a special case the symmetric linear predictor (sLP) 17, 8], while the second includes
Burg's MEI.

In case (i) we solve the equations
L 4

P(,,) = d(k) F(m - k) J,,,<L= M12 (Al even) (3.4)

and use the fact that DLL approximates H p/f to obtain, as the estimate of f, the
centred inverted ion (CIrPDF):

ciLFT:,p alD ~) (3.5).
If the prior p(a)=constant, then (3.5) becomes the symmetric linear predictive*
method of Johnson [7]. Note that if the support off is properly contained within the
support of p then, in order to obtain the d(k) that are optimal for that f and p it is

,,,,"

5.
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6 C L Byrne and Al A Fiddy

necessary to replace P(m) in (3.4) by the corresponding Fourier coefficient of the
function that is p(a) on the support off and zero otherwise. In practice one does not
know the support off; our point is rather that (3.4) does not provide the optimal d(k)
for such pairs p and f.

The role of the prior p(a). in the nonlinear methods, is to reduce bias in the
estimate of peak locations; if we estimate the background component badly then the
filter, as it tries to eliminate the f(a)-p(a) features, must null out (true back-
ground-p) as well as the discrete component. With limited freedom to place nulls.
bias is unavoidable. This has been shown to be a problem with ,E,. when used on
overs:'mpled data [1], and is due to the assumption, implicit in 1EM. that the
background is constant over [-..-r.rj. We consider M1ENi next, as a special case of (ii).

For case (ii) we have K = 0. L = M and we solve equations

At

P(1") = E d(k) F(m - 1) 0,,, nMl (3.6)
A,-1

N to obtain the filter function D,'; we view this function now as an approximation of G,
not of H=plf. The discrete Wiener-Hopf equations (2.4) are equivalent to the
statement (R,) =(RG)., where by (R,,). we mean the causal part of the Fourier
series

(R.,) (a) = r,,(m) exp(ima) a1<:r (3.7)

and similarly for other functions. Equations (3.6) tell us that the two causal functions
,e p, and (fD,')4 have identical Fourier coefficients, out to index in = ,l. Because D,, is

a finite polynomial we can rewrite fD]'). as (fD'). =f.D1'+j_ where j. is a finite
k. causal polynomial involving only known values:

At -I ,Af-

j.(a) = F( - k) d(m - k) exp(ima) (3.8)

From p.=-fD, ') =f.D '+j we obtain an estimate q off+;
.. q(a) = (p.(a) -j.(a))lD1''(a); (3.9)

," from f= 2Re(f+)- F(O) we obtain the inverse PDFr (IPDFr) estimate off itself:

IPDFrt(a) = 2Re(q(a)) - F(O). (3.10)

Consider the complex polynomial D(z)=d(O)+d(l)z4-... +d(AI)z t . If the roots
of D(z) are outside the unit circle (the minimum phase, or Nit property) then l1/D,'(a)
is also causal an!' so is q(a). It can be shown easily that, if 1ID,,'(a) is causal, then
tPDFT(a) is data consistent, although it may not be non-negative. Although it is not
always the case that D(z) has the Nip property, it is frequently the case in practice, and
the .PDTr is usually data consistent. If the prior p(a) = constant. then the IPDFT reduces
to Burg's MEM, the D(z) has the hip and the NIEM is data consistent (as well as non-
negative).

As remarked earlier, the MEN, has been observed to perform poorly when the
function fis concentrated in a smaller region of [--.r, -r]; this is because the p(a) is a
constant, while the background is not evenly distributed over all of I- .r, .r]. Because
the iPDFT'r is free to take on negative values it could be used to gauge the accuracy of

U.,U.

U.
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Reconstruction as a Wiener filter approximation

the prior being used; significant negative values should indicate, that our p(a) is not
accurate. We have not obtained a quantitative measure of the significance of negative
values, however. e..

We consider now the extensions of these methods to the two-dimensional case.
Although much remains essentially the same the absence of an obvious generalisation %

of the notion of causality affects the extension of the itrD-r.

4. The tNo.dimensional case e%

As in the one-dimensional case, the power spectrum of the input. R,(a, P). is the sum Ok%
of two components, R,,(a. i)= R,,(a,)+ R,,,,(a, fi)• and the Wiener filter is the
doubly indexed sequence {h(j, k)) of Fourier coefficients of the function H(a,
)= R,,(a, fi)/Rj,(a. fP). To obtain a finite-impulse-response approximation to the

Weiner filter we minimise the following error of approximation, as a function of the
d(j, k):

I H(a, 8).- D (a, fi)I2R,,(a, fi) dadfi (4.1)

where
J L .N

D9.- (a. 0) = d(j, k) exp(ija + iko). (4.2)
j-I k-K

In the two-dimensional case the problem is to reconstruct the non-negative
function f(a, b), lal, IbI<,r, from finitely many values of its Fourier coefficients, F(n1,.
n). ImI<M, InjIN. As in the one-dimensional case we consider estimates of f(a, b)
obtained by analogy with the problem of approximating the Wiener filter.

4.1. Linear methods
Assume that a prior estimate of the general shape of f(a, b) is given by the positive
function p(a, b), and that {P(m, n)} are its Fourier coefficients. As before, we let p
play the role of R., f the role of R,. so that the Wiener filter is H =fip.

For fixed 1, J, K, L the optimal finite-impulse-response filter function is D(a,
= D (a, f) where the coefficients of D satisfy the equations

I L

F(n, ,n) = d(j, k) P(m -j, , - k) Itj<A1• IIN. (4.3)

Having found the d(j, k) we use the fact that D approximates H =f/p to obtain our
estimate of f:

PDFr(a, b) =p(a, b) D(a, b). (4.4)

The obvious choices for 1, 1, K, L are - 1= J A, -K L N.

4.2. Nonlinear methods

We assume now that f(a• b) has a discrete componcnt of interest, as well as a
background component estimated by the non-negative function p(a, b). As in the I D

%%
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8 C L Byrne and M A Fiddy

case we let p play the role of R,,,f the role of R., so that :he approximate Wiener filter
attempts to null out the discrete component. If the support off contains the support of
p then the equations to be solved for the optimal finite-impulse-response filter {dO.
k)) are

I L S~

P(n?, a) 1 1 d(j, k) F(nm -j, n-j) <,,.J, K< n<L. (4.5)

The choices for 1, J, K, L will be restricted by the available data, since the data make Id
up the entries of the matrix that appears in the system of equations to he solved. We '4
consider here two possibilities.

(i) Let J = - I = AI2. L = - K = N12 (M. N even). Solving (4.4) for the d(j, k) we
view D=-.. as an approximation of H=plf, so that our estimate of f is the
two-dimensional version of (3.5):

ctpiF-r (a, b) =p(a, b)/D(a, b). (4.6)

(ii) Let I=K=0, J=M, L=N. Then D can be viewed as an estimate of the
first-quadrant-indexed component of H, which we denote by H,,. With the first-
quadrant-indexed component of p(a, b) given by

p(a, b) . P(n, n) exp(ima + inb) (4.7) ,
rn-li atoll

equations (4.4) state that p(a, b).. and [f(a. b)D(a, b)]. have the same Fourier
coefficients, for indices 0-<rnM, 0< n_-N. As in the ID case, we can write (f(a,
b)D(a, b)] .=f(a, b) D(a, b)+j(a, b) ,, where j(a, b).. is a first-quadrant-
indexed function that involves only known values. Our estimate of f(a, b is then
q(a, b) = [p(a, b).. -j(a, b),.]lD(a, b), which may not itself be first- iadrant-
indexed. Repeating this procedure three more times, for each quadrant, we .stimate
f(a, b) by summing the four estimates so obtained, taking care to subtract con. -onents
included in more than one estimator. The resulting estimator we call the IPDI .

5. Relation to other methods

The reconstruction problem considered here is to obtain the function f(a, b) from .he
values F(in, n), Infl-<M, InIN, where

F(m, ) =f f f(a, b) exp[ - (ima + ib)] da db/4 ; (5.1)

that is, we are attempting to solve the integral equation. The survey paper by Frieden
[9] describes a number of approaches to this problem.

When the p(a, b) is chosen to incorporate support information, so that p(a, b) = 1,
Ial<A <.r, IbI<B<-r, and p(a, b)=0 elsewhere, a small amount of noise in the data
can cause degradation of the PDFr estimator. It is safer to make p(a, b) = C>0, instead
of p(a, b) = 0. This is a form of regularisation and is in keeping with the requirement
that the support of p be no smaller than that of f. Since the PDFr performs an
approximation of the function f in the (a, b) domain and smooths the effects of noise
(if regularised), it resembles the methods of Phillips [101 and Twomey [11]. The main

I
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differences are that the PDrT retains the continuous formulation, rather than discretis-
ing f(a. b), and employs a prior estimate of the function f.

It might appear that the PDFT is related to the Helstrom-Weiner 'sharpness-
constrained' method 112]. The latter is based. however, on a statistical, or ensemble,
model for the restoration problem and employs power spectra of f and p; the mean
squared error is calculated in the usual L2 norm. rather than with a weighted norm in
(a, b) space. In the approach presented here we do not postulate the existence of an
ensemble of object functions f to be restored and the idea of Wiener filtering is
introduced only to borrow the weighted error criterion used for approximating non-
negative functions by polynomials. The Backus-Gilbert [13] method is similar in
philosophy to the Helstrom-Weiner approach but there is only a superficial connec-
tion to the estimators presented here.

Because the finite data are typically insufficient to determine a single, unique
solution to the reconstruction problem, one is faced with the task of selecting, from
among the many possibilities, one particular answer. The general feeling, which we :%
share, is that the selection should not be arbitrary but should be guided by some IN
reasonable principles of inference. At this point there is some disagreement concern-
ing which principles of inference are to be called reasonable. In an attempt to resolve
the situation Shore and Johnson [141 developed an axiomatic basis for the principle of
cross-entropy minimisation and Jones [15] has recently provided an approximation-
theoretic argument for the same method.

Among all functions g(a, b)>O consistent with our data we could select the one for
which the Shannon entropy

entropy(g) g(a, b) log g(a, b) dadb (5.2)
L f -4

is maximised. Generally, there is no closed-form solution and iterative procedures are
employed.

If there is available a prior estimate, p(a. b). of f(a, b) then (5.2) is replaced by the
cross-entropy of g, given p:

cross-entropy(glp) -= f: f g(a, b) logfg(a, b)lp(a, b)) dadb (5.3)

The method of 'minimisation of cross-entropy' (MCE) has us select, as the estimate of
f(a. b). that data-consistent g(a, b)>O for which the integral in (5.3) is minimised. The
optimal solution then has the form

At A'

MCE (a. b) =p(a, b) exp , (j.k) exp(ija+ibk) (5.4)

If p(a, b) is a good prior estimate then the sum in the exponential term will be near
zero; approximating exp(x) by I +x leads to an estimator of the PDFT form. If it is
known that the function f(a. b) is spiky, then the sum in the exponential term will have
significant negative values. If we estimate exp(x) by 1/(1 -x), then this is better than
I + x for negative x; making this approximation in (5.4) leads to the CIPDFT form.

When the p(a, b) is constant over the support of the object function /(a, b) the
PDFT (4.4) provides a minimum energy extrapolation of the data, consistent with the
support constraint. In reference [16] we considered the problem of reconstructingf(a,

.,.



10 C L Byrne and M A Fidd)'

b) from only the magnitude data, [f(nt,), n ImlfM, nlj_<N, that is, the phase retrieval
problem. When arbitrary phases are assigned to the magnitude data and the POFT
energy calculated one finds the energy to be dependent on that choice of phases and
therefore to provide a useful cost function to direct the search for the correct phases.

6. Conclusions

In this paper we have considered the reconstruction of a non-negative function from
finitely many values of its Fourier transform. We have extended to the 2D case
methods previously presented for ID reconstruction [1] and obtained a new derivation
of these estimators based on analogy with the design of approximate Wiener filters, in
which the object function to be reconstructed and our prior estimate play the roles of
input and output power spectra. To obtain linear estimators we let our prior estimate
play the role of the input power spectrum, allowing the filter to extract those features
not found in the true object. To obtain nonlinear estimators for spiky objects with
continuous backgrounds we estimate the background function, and then let it play the
role of the output power spectrum; the true object function then plays the role of the
input power spectrum, so that the filter attempts to null out the discrete component.

The linear methods are extrapolation procedures that are particularly useful when
the data are oversampled. The nonlinear methods generalise the Burg maximum
entropy method, for the ID case, and provide computationally inexpensive 2D
approximations to other entropy-based methods.

The methods presented here are derived using the best approximation in weighted
Hilbert spaces; the linear equations to be solved in each case are the normal equations
that arise from such a best approximation and we know what is being approximated by
what in each case.
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Stable data adaptive matched field methods for ambiguity
reduction in source parameter estimation

by

Charles L. Byrne and Christopher Feulilade

(First draft)

ABSTRACT

Data adaptive methods, such as Capon's maximum likelihood (IL)
method. suppress sidelobe structure and reduce ambiguity in source

parameter estimation because they are optimized against unwanted
terms actually present in the data, rather than against an a priori rmode!
of what could be present. Wht-en the noise component resembles potential
source terms and produces a reduced rank cross-sensor correlation
matrix in the noise-only case methods such as IlL can become unstable.
By employing a "reduced rank" ML estimator we can avoid this
instability. This method is analogous to the "sector-focused stablit"-
method recently developed by Byrne and Steele, and is derived bu
considering the general problem of suppressing ambiguity In parameter

estimation.
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Tihe generalized sidelohe problem and optimal suppression

A problem that arises often in applicatio'ns is the fol low ing One.
stated here in general terms:

The matching )roblem: Let e be a family of (possitbly vector)
parameters e. and let F'Ip(O) I( in 8) be a family of pairwise linearly
independent N-dimensional vectors parametrized Dy the e in e. Our datLa
consists of the single vector pz0p ) takn from P and the problem is'

to determine the value eEo

if the members of P are quite distinct and 8 is a small finite set
then the prob!em is easily solved by inspection. Miore commonly, the set
E) is a continuum, the vector function p(e ctInosr .adteda
vector a noisy version of P(60). The usual approach in such cases is to

perform linear filtering, such as simple matching via the dot product.
and base the dec is ion on tne ou tcomes of the f iIt er ing.

* Linear filtering solution: Consider each member 0 of 0- in turn, hold 0
f ixed and se lect a l inear f ilIter f =f (0), a N-dimensional vector with
entr ies dependent on e. Let y(e)= jL~, fr +M f be tne (magnitude
-- iuareld of the) filter output. We -.now from Cauchy's in-?qL13hty that

* ~ )(~ 4 X'.witn equality if arid only i f =7cx for somne sc3!ar Lx:
from the func-tion y(9) we can then determine G,.

(0)Te ,wt

F/'ample: For each 0 let f(0)= p(G) / J1(p(E)~)) Thn p(~~pwt
equahty if and only if ( Go This method we shall call simrle niatchi"Q

the graph of the furiction y(6) is usually called the armb i u i 1, surfac e.

If, in the simple matching approach, the output y(Gi) is large for a
value of 01=60. we say that there is a sizable sidelcibe at G~ for the

tru0vlu We shall describe two general procedures for reducing t he
sidelobe e-1ffect. the f irst a l inear methocd that does riot depen on ttle
cic-tU3l dat3 obta2ined, ankl the secoind 3 djata .-dapt ive metnkrd analIoq nius ,j

M 3X I'n ri:iUrn~ ik e I i hood rr .t hoti (F11i' forct r u tirati .



A linear filtering method to optimally reduce sidelobes _-

Denote by y(O;OO) tihe magnitude squared of the filter output rt,(*

corresponding to fixed value 0 and true value 00. For any particular

problem we do not know the value of 00, which could be any member of

E. For those 6-6 0 we want y(e;OO) to be small; since we do not know e0

let us make the average value of y(e;e O) small, as 00 ranges over the

various members of 6. Specifically, for fixed (. select that filter f(O)
for which fy(0;0 0)/p(0)'p(e0 ) dO0 is minimized, subject to the

constraint y(0;0)=I; the precise meaning of the integral will be ciear
from the context. We can formulate this in matrix language as follows:

linimize fA_, subject to f__(O)= 1, where A is the N by N matrix
with entries Amn= f -(%)mn -(0)/ ()o(e0) dO0 , and subscripts

denote the particular entry of the matrix or vector. Using the normalizedvectors q_(00)= L, O ¢ " " A=[_(oe) d0 .
vts (%)_ ( _(O0 )%(o0)) we can write A: .(00)) dO.

The optimal filter is then f opt(e x(e)A-lp.e) where the parameter

?,() = I/p__)A~()) , provided that A is invertible. The value
OT.,t(e)a 2 (&)+A I p 2 is then the
furiction we want to use to compute the optimized ambiguity surface.
If the matrix A is not invertible then pseudo-inversion is used to obtain
the optimal filter; this will be the case in the normal-mode situation
considered below. P.

For fixed 8 the optimal filter f(O) operates on the data vector L) and

we want the value Ir(e) Pl 2 to be small if ee,. The optimal filter is

designed to make this value small, on average, but the actual data we
have is a particular a(o0); we do not really care if iL(fJ)_(OI)1 2 is

large for other values 031-e O. since [(e) does not rave to ol:,erate on

(O 1) Data adaptive methods, such as Capon's MLM. optimize the filter

aqmanst what is actuallq l there in the data. not aa,inst a ca -" f
r,-,tentaia. hbuit mJs !l not actual, dat.i vectors. We :ns,:er n't.i the

ton rf.;r ,1oer,c:r . *. r r t lrr -. ,' , ... .of. U' ,
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Nonlinear data adaptive filtering ror sidelobe suppression

In practice the data may consist of several p. each a noisq version
of p(eO). Of interest then Is the average over all the p of the value of

the output y(e:0 0 ); averaqe output =Jf(e)Thj 2> =(e) <pj>.(e) =

f(e).R(G). where < > denotes averaging over the available p_ and R is the
matrix R=<o '>. For fixed 0 let us find that filter f(O) for which this
averaged output. /(e)Rr(e). is minimized, sub lect to the constraint

L(e)' (e)=I. This "maximum likelihood" solution is easily seen to be
r{rn(e)= X(e)R-l(e), where the parameter is %'(0) = l/p(e)'R"_e). The

averaged output is then ML(O): 1/p(e)4 R- Ip_(O). here it is assumed that
one effect or averaging and of noise is to make the rank of R equal to N.
Note that OPT(E) differs from rlL(e) in that A is replaced b.q R in IL; it
is in this sense that ML is data adaptive.

The ML approach will generally outperform the OPT method because
it can employ its algebraic freedom to reduce sidelobe effects coming
from what is actually present in the data, rather than to guard against
potential threats that are most likely not present.

Because loss of resolution in linear estimation is a particular form
of sidelobe problem the ML approach typically achieves better resolution
than linear methods. If the data vector is a superposition of two or more
members of P. say =_(G0) + P(e),. with e0 and 01 similar, then the

simple matching method may result in I f(e)P-l 2 being largest at. 0=. '

where e, is neither 60 nor e1, but is near each. We could saq that in .

this case the sidelobe at e2 caused by 01 is added to that caused by 0,

resulting in a maximum between the two correct values. Because ML can
*: do a better job of suppressing these sidelobes it can resolve when the

simple matching, or even the OPT method, cannot.
In many practical situations the data vector includes an additive

random noise component. Depending on the statistical behavior of this
noise component the performance of the IlL method can vary
considerably. In [ we discussed the instability of the tiL estimator of
bearing of planewave source fields, in the presence of spatially
cor.entrated nc'ice and systematic phase errors. The instaroli'4 aries
wvhen the nis -c,-,rnproner "ioo .s I ?" rtent a3l . ginals and c,:rresI,,,,!n(!,
t, a reduced rar! crrr[irin.t of the rn. r i:R, k
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In the next section we shall consider the OPT and ML methods for
the case or normal mode :propagation in shallow water: here a!so the
noise component can lead to instability of the ML method and we shall
need to develop more stable procedures.

4! Normal-mode propagation and signal processing

The field at range r=O and depth z excited by a unit amplitude point
source at range r=r 0 and depth z0 in a waveguide is

P(z) = P(z;r 0 ,z0 ) = mi " Sm(roZo) Um(z). (1)

m-l

where Urn(Z) is the mnth modal eigenfurction of the depth-dependent

boundary value problem, and $rn(rozo) is the modal amplitude value,

given by

Sm(ro,zO)=0 exp(3Tmi/-1)exp(-,6r,. roikmro)Um(zO)"(2t7/kmro) (2)
*,.,

The pressure field is sampled using a vertical array of sensors, at
depths Zn, n= ,...,N, and single frequency components extracted via FFT to

produce the vect or P=(P(z1 )..P('N))T . This vector, obtained (ideally)

from sampling the signal-only field, can be written as L)=s_, where U is
the N by 11 matrix with entries Un m=Um(2n), and s the 1 by I vector

with entries s. =m(r.,.O).

In the case of a high-loss bottom most of the noise-reaching the
array is unaffected bu the bottom, so contributes to p a vector of the
form a . whose entries are (possibly correlated) random variables. If the
bottom is low-loss then noise energy can excite the modal structure and
contribute to p a component of the form U^-, where 2 is an 1i by I vector
whose entries are random variables representing the aggregate
excitation of each mode bq the superposition of noise sources. We can
therefore write the data vector as Z U . US_ + 2. wltn
randomness entering throuah the zi and the j: when one considers the
effects of rouqh surface scattering on the signal one includes random

, s o f t h e e r l r ; er ,: f :: . T h a tpliase? wd drnrlitude mc'du a!. tl o h rdr~~ _f 1hjf rnatrL:x

'"$ % % %, *' " % ,...... .. %......*. ......................
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R <pm' " now has the form

R LiU.s_ i U<7._'>U+ * <j_..> = Uss4 L!' UQU" G (3)

We shall assume that the non-modal noise component. G. is a multiple of I
the identity matrix, representing spatially uncorrelated noise. such as

4 sensor noise. The interesting term in (3) is UQU. the modal noise
component of R.

Typically the number of modes, IM, will be less than the number of
sensors, N, so that the rank of the matrix UQU is at most M. Because
he signal component, Us, and the noise component, U6, both lie in the M-

dimensional linear span of the IM columns of U the noise looks like
potential signals and we expect ML to exhibit the sort of instability we
discussed earlier. We shall return to this point when we discuss stable
nonlinear methods; for the moment we consider the OPT method in the
context of normal rodes.

Optimal linear processino in the normal mode case: Let us denote by
;,(o0): p(r 0 ,z0 ) the vector of field samples we would obtain in the case

of only a single source at E0 (r0.z0 ). Let us normalize p(e0 ) to qet

U/( ( 6o)). The matrix A that represents the totality of
potential source vectors is now AJU_(e 0 )u() 4 d6o . where integration

with respect to 60 means over 0 z0iH=channel depth, and over

and d 0=rdrd- From (1) and (2) it follows that the matrix A has the

form A = UBU, where B is the matrix with entries Bink iven Dy

* oo~) - ~rd 0 . (,)
Sm.k =  5 m(ro,- O)--k(ro.Z-O)' p -2 (rol-,Odrod-o.

and p_(r 0 .: 0) I:(p(ro.zO)+_(r 0 .z0)).

V..

. The iII Iirn!aonpo lem be solved is: ,N~irnmze VA!. subject to '

-, .. ( .):i This s e,.u~val n i q lnirriize v' By. suilect to- ..'/Yr.:): ftt l



where v=1Uf and 2(r.z)=Ls(r,z). The optimal v is .pt:=CB 5(rz) for

,c.-l/B(r z)'B-Is(r.:) The optimal filter f is found as follows:

assume that f =Uw for some w: then _ptU 4 f_.opt=UU4 W, so that-opt Y-!LVU I y_, n otUUU- ' o ste
U -and _pt U(U'U) op t . The optimal estimator is then

OPT(r,z)=< I .optip(r.z) 2  s>c2 (rz)'C*RCs(r,z) (5)

where C=I(U U)- B 1

N
Note that the entries of U U are (U . Ur (Zn)Uj

H n= I

Even if f Um(Z)Uj(z) dz =0 for m=j. it may not happen that

.=0

(U+U)mj-0. for mxj; the latter involves the locations of the sensors.

whereas the former does not. Because the integral is only over the water
column and does not include the bottorn it may not be zero either, as in

cases such as the Pekeris model in which Oz<- are the limits on z.

flode-filterina as an aproximation to the optimal processor: We obtain
the mode filtering procedure discussed in Shang[ I by making several
s;implifying assumptions in the computation of the matrix B: specifically,

3t us assurme that I Ir,(r 0 .z0 )i I is constant, as a functicn of (r0 ,z0 );

and that the functions Um(Z 0 ) are orthogonal over the interval 0<,Oz0 <H.

Then the entries of B are Brn,i=o, mz j, Brnr mI! 2 ,mkrn. so that ti s a

diagonal matrix. If we assume, in addition, that the values ,m and km do

not vary greatly with m. then B is (a multiple of) the identity matrix and

so C=U(UU) -1. The OPT estirnator is then approximated by the mode
filtering estimator (IFE)

MlFE(r.z) U ._ uu URU(U U)- (~) 7

w! , s r,z)- r.z).

liil~~~~~ Z Z I- -i-.-I-I-, - .I iIIi t"i•
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Thie max:imum likelihood arvDroach in the norm-al-moirde case: From the
matrix R=<QQ 4 '>, we obtain trio ML estimate:

ML(r,z)= I/ a(r,z)+R' I(r,z) '

Since R=Uss'J+ UQU" El ,it follows that, if the rank of 0 Is Mi, the
eigenivalues Xn of R, for n=1- I1.N, satisfy Xn=E and that trie acsociate-d

ecienvectors have the property that U~ ? y-u: for nzl,. -. 31 ) >
Writing R = XL where the columns of X are the orthonormal
eioenivectors 2 , and L is the diagonal mnatrix of eiqenvalues of R. that is

L =diag(?X I ..I ) we can rewrite (8) as

N N
tl~r2 1 p ~I~ r,z)*- 2 1 / n- 1 s(r,z)*u*4 ,,2 ()

n1 ~

n= I n=l

-ecause of the reciprocal weighting by Xn those terms corresponding

to the lowest elgenvalues contribute most; that is, the sum is
essentijal ly over n=M+ 1-.N. Because, ror these n. P-(r 0*: 0!,)+' = 0 f or

(r0 4z0 ) associated with the true source, we might expect, as in the usual

case of ML estimation, to discover thie value of (r04z0 ) by evaluating
ML(r.-Z) and looking for the largest Value. However, each of the terms in
(9) corresponding to nzM- 1..N is zero, for all (r.z). It follows that the
111- estimator will show a larqe response for each (rz.riot -,InIQ for the
(r04z0 ) corresponding to the actual source. The resulting ambiquitu

surface vWil be essenti.iiii uniformly "white".
It is important to recall that this failure of the ML estirriato-r

c-curs when the noise component is essentially modal, that is, of the
form UOU'. as would be the case for a low-loss bot torn; if there is no
moise component or this form then the MlL procedure sh~ould work better.
Wren the modal noise is present the situation is.3nalogouis to that of 4

spatially coc-erntrated planewave noise and the solution we shall1
consider nex:t Is similar to the "s:ector-fcutsEd stabilitu" i 'P) Method(
given ini 1.



Recitced-dimens ion MlL method for the normal-mode case

The matrix U is N by~ N anci induces a linear trarsforrnat ion from tYie

space of complex N-dimensional vectors. C1 into the space of corple

N-dimensional vectors, CN; we shall assume thiat U'U is invertible, which

is equivalent to U being one-to-one, or to U* being onto CM. Every >,i

can be written uniquely as a sum :x*Uv - w .for some v in CM a'd W !n

CN such that U " w0O; in fact, vr(U*UY- 1 U*: and wzx-Uv.
The NL method, because it relied on the eicenvectors of R

associated with the lowest eigenvalues, failed when those eiaenvectors

2 ,n=MN I.N, had the property U* nQ To obtain a data adaptive,

nonlinear method that works in the presence of modal noisle we need to

rely on vectors x with the property that p(r0 ,z0 )'x=0, but Sucht trat

P(r~z) -x"O for other values of (r,z); in particular, we rrust not nave

U-x, or even near zero. One way to prevent this behavior is to r;equire-

that x. not have the component w such that U w=Q; that is, requi,-e that% x
have the form x=Uv for s.ome v. Let us now solve the following
optirnization problem, in lieu of the one th-at leads to the lowes,
eigenvalue of R:

Minimize x*Rx , subiect to xx -=I 3n/y xM-Uv for some v

The vector x that solves this problem can be obtained in a pr uLr

simple way: define the N by N matr ix T=(U'U) 1 2U*RU(U*U) 1/2; tn~en

U(U*U[ 1 e where e is the normalized eigenvector of Tasoaedwt
the smallest. eioenvalue. We can now determine (r0 ,z0 ) lol, cEarcrinc o

the zero. of the function ~(,).or, having obtained T. we can cuf

the reduced maximum likelihood (HlL) estimator:

RrNL(r,z-): I / (r, -- 'T l(r,: ,z) (U4UY1 /U4(r,:) (10)

wrich is equivalent to a NL procedure on the modle-filtered R

RiL (r..-) = ! j (.: I I)o r .:~ .c, '1 4 4.:)



Reduced maximum likelihood method for the general case

What causes difficulty for the ML estimator in the normal mode
case is that the modal noise resembles actual sources and that its

matrix, UQU+. has rank M but dimension N. The ML method and other high
resolution methods expect the lowest eigenvalues to correspona to
eigenvectors orthogonal to tre signal component, but not to all potential
signals as well. When this happens the ML is useless and the reduced ML.
or something like it, required .

Let us suppose that~he matrix R.has rank. M, but dimension N>M, so

that it has the form R=UTU , whereT s an M by M positive definite
Hermitian ratrix and U is some N by M matrix; in the normal mode case i

it consists of eigenfunction samples, but in general. we will not have a " ,
.,j<i(L) model for U. Assume, for now, that U is known and that T is data

Y
. dependent. Writing T=WW , where W is an M by M matrix, we have
* R=UWW+U =VV 4, for V=UW. Because R has rank M its inverse does not

exist, so ML cannot be formed. A standard trick to create invertibility is

to add a small positive quantity to the main diagonal of R: in the normal
mode case above this was done through the El term, but did not make ML
usable. Instead, we consider replacing R-1 by Rz, the pseudo-inverse of

R, to obtain a reduced ML estimator.

The pseudo-inverse of R is R:zV(VV)-2V=U(UU) - tT- (U*U)-IU"
and the reduced ML estimator is s w)' ,--

/(
/

RML(O)= Up /s(O)"T- Is(E)).(2

where s()= (U+U) '__K(): this agrees with the RML we obtained above
in the normal mode case.

In general we may not have a model for U and mau need to form Rz

some other way. We can do that by taking R=XLX*. RX=XLzX' . where L

is defined to be the diagonal matrix with entries XrI 1 provided Xn is

not too close to zero, and 0 otherwise. Using R in (12) gives the RML

estimator in the qerleral ca,-,e• ' i=UY.,

.', -'" U+Z L " Y U 'U ,
T .ex,,L- t T-- (U*UVb) or ,(C/LA) (7r ., YL

* +, zU_ /j)(U V),-

'- +' Q U UV



Using the matrix structure to obtain environment parameters I

inI ic nhn n I inro j1iciggcc thc, ijz rf tre angular '

distribution of noise power received by a vertical array to estimate the
critical grazing angle of the bottom, and hence the compressional sound
speed in the bottom sediment. This is an example of an inverse problem,
in which environmental parameters are estimated by comparing measured
data with theory.

i
In another paper Buckingham considers the structure of the modal

noise component UQU*, for the case of a range-independent isovelocit.
channel with a low-loss bottom, where the noise energy is uniformly '.

distributed immediately beneath the surface. The interesting point made
in [ 1, from our perspective, is that the matrix Q is essentially a
multiple or the identitq matrix. Knowing that the theory requires this
and having measured R:UQU4 in the noise-only case, we could estimate

the matrix U: for each choice 0 form I(UU)-URG(TU_) 1; if we have
chosen the correct O=U then Q:Q=xl, whereas for wrong choices of U the 5-

matrix b need not be diagonal.

An interesting object of study would be those noise fields for which

the matrix Q is diagonal. Is it generally true in normal mode
environments or are such noises special cases? It is not a statistical
phenomenon but, in the case considered in [ at least, follows from the
nature of the eigenfunctions Urn(Z) and the manner in which the sources

MI
of independent noise energy are distributed spatially. The analysis in [1
Coes Invoke a "large M" approximation (p. 1188, (10)). so leaves open the

qujestion of whether or not Q is diaoonal for small 11.

CI

1''-::-
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S it ., ~ c i',. 1:. to li- sp. e--

recorE~ttlcti.. f f-or
of positiv'e functionr s fr-onri lirnited data. e _-hall assuMe

that the integral Of the function (call it P(')over its (,omr act):-:uport
is I , .I .oI sO, that, b y. resc-aiinq to have integra on-e,. .,e mi'y a,.s mes tt t
the function to be reco,. d is a (rnIeasurable) probability density
fu,cion. A ceneral procedure for e..nstructi!Dn is to select :3 prior
e-tirrate of FQ:.:.. (call t F:. . rd then tc .;ccept as the evli a te of RF.,..
that data consistent dens-i ty ,": that i clo-se::t to P(e), i, sore
app~ro priate meaP1-ure 2 I 1 -.3tanc e. Th e di stasnces j(PC-": t""Qx,,Fx,.d,

wheL~i~re. f('4 ijis .:'1tly constrained furction of z'0, r ..,ide a ,,.i de
-c s ...of reconstruction procedures, which is the topic of this E'ae-. A

special case of such reconstruction is the "minirnizatior of cross
entropy" method (MCE).

The method of minimization of cross entropy (ICE), implicit in the
of Shannon [11, and advocated by numerous authors, including

Janes [2,31,, was proposed by Kullback, [41, v.ho called it the "principle of
rinimrum directed divergence". Theterrn "cross entropy" is due to LW
Good [5]. The rICE method has been studied extensively by Shore and
,_Johnson, who have derived the principle from axioms of consistent
inference [6] and have used the resulting reconstruction method in soeech
processing and spectrum analysis [7].

Although the axiomatic derivation of the lICE method found in [61 is
tased on probability theory, it is finding application in the reconstruct-
ion of essentially non-probabilistic functions (which happen to haye the
rnathematical properties of probability density functions), such as enern'y

odistribution as a function of bearing (arra.y proce.sing'. .x-ray, attenuat-
ion functions (in tomography), and non-negative images (in optics). The
properties that the reconstruction will exhibit in these cases are not
easily predicted from the axioms of logical inference from which the
method is derived. The basic problem is one of approximation: we wish
to u-;e the data and prior information to construct a function th'at will
aproirmate the desired function in some appropriate sense. The MCE
rethod ernplnqis a (ron-surnrr:etric) measure of distance bet,,,een
functJons that obeys an orthoqonality principle analoqous to that
associated with the metric of HIIbert space.

. %



-• ...,,,.-,,...,.,,.._, . . . - . ,, -- w r y r r- 'r. "-- s.'

±n [S] it '.."-s .sh.,,,.owr,... that t,,,s crthocwnalitu principi~ e rves - tr,.

d..,.:.,.,.,sh the r!CE rnethod from other distance milii ZatiO-
rocedures obtained from thC s-called All-Siivef-Csiszar dstances.

this paper we consider the extent to whicn the orthoqornalitu ptrrcpie
further distinguishes the MCE method from methods based onl a much
wider class of distances.

The probler is to reconstruct the non-negative measurable function
,(x)O, defined on a compact set X within d-dimensional real Euclidean

s p30 ce, now ng ionly the linear functional values rk, k:OK, given bP

rkk = 1(-) g..(. .) d::, (1)

,:.'here the g(:) are known linearly independent bounded measurable

functions. We assume that gOx.= 1 for all X, so that ro= area of F:,

which we then take to be equal to one. We let Z be the collection of al
measurable probability density functions supported on 'X for which (I)
holds. A member of .? is called &c;ssm. ,seif it is bounded above and
awau from zero on X. We assume that we have available a prior estimate
of R(,, in the form of a measurable probability density function P(x),
supported in X. To obtain our reconstruction (estimate) of R(x) we selectthat Q(x) in C closest to P(x) in some appropriate sense.

To measure closeness we employ non-negative distances of the
form'

D(Q,P) J f(Q(x),P(x)) dx, (2) "

w.;here f( ,z) is a suitab l smooth kernel function. Associated w.1ith a,
particular distance is the following optimization problem:

Problem A: Find Q in t? such that D(,,P)h_ D(Q,P), for all Q in .

For example, the MCE method employs the kernel f(y,;)= y log(y/:),
and D(Q,P) becomnes the crssof given P:

E(Q,P) J Q0) lo[Q(x)/P( ')] dx; (3)

the MCE solution is that QCE(x) in C2 for which (3) is minimized.



* at

2.. T he rrt - , it. .......-,[rirpci ,, the .. M rr ethod

!t rny be that there is no rer er- ct T' Tor whiC: h E.:, 1:; f ni te;
,r, r, f: the supricrt of P i not a51 of ." and g (: 1 S for ortoh.-e X I'

.* but outside t .e -uoprt of F, while 0 other wise, and that r I1. Hover,

,,..-,_ s one ,i . for vhi.- h E(-,F') is finite the the r ol' t t.J
-" .,::t:;. , V Ie forrri

Utl ' Fkx) e.;. p( ..~ 9r$x) +...+ a :.. q. x

I n a rid zero otherwise, where N is the union of the supporzs of
I rin fr which E(QF') is finite. A rigorous proof of this .as first

-,-,,e n, by F, 1...r 9] and a riore restrictive sufficiency version was
Droved earlier bu Kullback [1C.

Assume now that the support of P equals X, so that the MCE solution
eists and has support X. Let 7 tie the set of all adriossible densities
having the form

T(x) P(- xexp( t0 go(vX + + tK gK(x) ), x in X..(.)

.-,ince J T(x) dx z. there are only K free parameters and t,- tnit

1s a function of the other parameters; specifically,

t -log {. P w) e-p( tI gN() + ... + t gK() ,

The following theorerm i:-: the Si,' i,:Q h.fA:, of interest here:

Theorem: The choice T(x)=QcE(x) minimizes E(R,T) over all T in T.

proof: It is easily shown that E(R,T)=E(cE,T) + E(R,P) - E(QMCE,P), so

that E(R.T) and E,~-.C,T) are simultaneously minimized. But it .ollos

frorri elerrient:3r. properties of the functlori f(y.z"=y log("/z) that
E c _, )m M E(% c,T), with equality if and only if T=.ccE.



.4

In t;' p" pe;r-w a r:errned with characterizingri thOSeC d s.-:. es

,.',F') , f ,Q(:~).:. . .. . d; for v.,.'.:h the anal a :..s orthoqon alltt' , pr C iC .
". hcoild S.

The . r neral i ed nrth c.n;al it Eiri rtr:i pie

PPis an admissible den.:it and the (x) in t? rnirirrizinq D(C,P) ,

::o adrmi'.si bIe t hen it cr_:an te shown tha t the EuT1er-LaQranoe eqU;1,f
mu-t be catic ed; that is, for all -, we have

for some choice of constants 3O,...,3K, where f 1(y,z) is the partial

derivative of f with respect to the first variable.

We no,.:., generalize the orthogonality principle by defining the class
7 now to be all admissible densities T(x) that, for some constants

tK1 satisfu the equation

f1 : . + + .K,,x/ for all x. ()

Vie then consider a second problem associated with the distance D:

Problem B: Minimize D(R,T) over all T in T.

The distance measure D(Q,F') is then said to exhibit the . W.."
hprmcA/le if whenever Problem A has unique solution Q(x) then it is also
the unique solution to Problem B.

Example 1. If f(y,z) = y log y/z) then D(Q,P)=E(Q,P) and the orthogonality
principle holds.

E:-:rnple 2. If f',.: (y-) 2 /2 then Q ,= F'!' + a() 9()(k)+...+aK .

foflOwz;.s from (10-,; although the orthogonality principle holds there may be
no positive member of . of this form.
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ere e- 't -L>2:,rniDie 3 H; f,14,2) =4 Ck/4) f e(z") ,,'eretj 1s tnre ... imes ccintiucusN +:

d .e..ntiable and a :-4t , then the distance D(,F') is i the smooth I
A~i~~i~uu~C..ic. r, ,cC ft~S k~ ir, l *~ rnnit, 7fl i s

he or-thorornlit principle in this clss.

,e begin now to e::tend this result of [,'] to a *fider class of

distances associated ,'ith more qeneral functions f(g,Z). -

_Regul -ity .g.ournIptiors and adrnis:cible kernels-

We consider a general distance measure E:(Q,P')=j f(Q(x) P(x)) dx. .

and impose conditions on the function f(y,z) in order that the di stance D

haereasonable metric properties.

Condition 1: f y) c = constant, for wo ; .
',N

we w,,ant D(Q,P) D(Q,Q) always and the Euler-Lagrange equation

correspondinq to minimizing D(Q,P), subject only to Q>o and Q .= 1 'is

fP..~x),'x.:,=const ant..

Condition 2: f(y,y) = 0 for y>O;

we vant D(P(x),P(x,)=O for all P(x).

If we let h(y)=f(q,y)=0 then dh/dy =0. But dh/"dy= f 1(y~y) + f,,u) so

it follows from Conditions 1 and 2 that

Condition 3: f2(yy) = -c ,g--O

Our fourth condition is that f(y,z) be strictly convex in the first
variable; that is,

Condition 4: fl (yqz )P'0 for all %,z>0

we arrive at this condition uy examininq what happens to D(Q,P) foi Q

% .



near a Let be fi: '.ed point in ard let tie a r.eI irbrnc cf

Then let h() be any coritini-lous functionl, supported on LI , and r'ot in the
linear span of the functionsLI " , the restrictions to LI oftgkhe -C,...,n, the. Le anro

thlle, functions, gk(X-. Let ix., be the projection of hi(x) onto the span oft he "V U q ,' Ik, - ,,,,
t,6Iq 4)x) and let m(x)= h'x-. ) ., ; then I rr(x) g,.x) dx 0. k ..... K.

The functions '+ sr(x) are data consistent, for all s>O. We want the

rnirirrnum of J fLQO'.+srn(x. ,F'(,, to occur at g=O; the second derivative,I .. +. I I.M
with.resii+sm(>:, P,'-, mcx',- d:'. This mu-st; be,

poiisitive at s=O, for ee:,_ neighborhood II, no matter how smal1, a n d for
every point o; from our freedom to select the problem, hence the 1("x.)

and F(x, , it follow.,s that Condition 4 must hold.

:5urr.rizinrg, we say that f(y,z) is an ,' ,keel... if the
following cnriditions hold: f1 (y,y)-f (,y)=c ; f(y,y)=O, f (y ,-)>'', for

all yz>O.

The four conditions above do not guarantee that the Q(x) satisfuing
the Euler-Lagrange equation will be positive; the function f(u,Z) is said
to be . if the equation (7) alway.s has a positive solution for

5. Necessary conditions for the orthogonalityprincile

The following Proposition (which we prove in Appendix .) is basic:
to our characterization of distances D(Q,P)=J f(Q(x),P(v)) d- having the
orthogonality principle:

Proposition 1: Suppose that f(y,z) is an admissible kernel such that, for
every choice of R(x), the g1(x) and the prior P(x), the orthogonality

principle holds for D.Q,P)=fF(Q(x),P(.,)dx. Then f211(Y,:=O for all yz:>O.

4I

F '~.'La~... . ~ F.* **



rom 'n e qua t i o n f ( :"tQ 7,n ;d u ,1r c.nd .i i cr. it follows t:.t
't4y,-) h s the f orrn

flyzc -, + J.14, -cz + zjtz) - ')'

Sr s o rie functi on stri ctl y convex J(z), Jth , Th-----.-T-e

Z-Sk C rive x it y of J(Z) irplies that the furction ft'yz), given by

fi~y : !i'; +  .rj + z ,: ;, - 7)z' ( ):

is positive. It also follovs that if f(y,z) has form (9) then the necessary

Scindi t iion (7) becomes

'Q" ' '" j(k(Q')) j(P(x)) 0. (I I)

in order that f be p-admissible it is necessary and sufficient that the
strictly increasing function j(y) map the positive reals onto the entire
real line; we make this another condition:

Condition 5: The range of j(y), for y>O, is the entire real line.

Example 1: Let j(z)= log(.), so that J(z)= zlog(z) - z ; then condition 5
is satisfied. For c=l ve have f(y,.)= ylo'(H/z), so the distance is cross
entropy.

Example 2: Let I'z) -1..'z , so that J(z)= -laoqz); then condition 5 is not
slatisfied. For c=O we get f(y.,- ,-,,1 ) - log(y/z). If Pv'x)= constant, for
all x, then the resulting D:',P) is equivalent to negative eurg entropu,
-Jlog(Q,",dX. The Euler- La3grange equation in this case leads to Q(.)'
1/'(ao+...+a K !I(;')), and the orthogonality principle says that the
maximurn entropy method" (MEM) solution is the closest to R, among all

density functions of its form, in the sense of minimizing the distance
D(P,,T)= JE(R/T) - log(R/T)]. We shall return to the MEM later.

I%
IS

,S



6. e L-.r:e- zrv~ the t CE rretr, d l

3%' e. S ern th at 1e)is riecessari- (along '" T our four t.., !:
or D ,F to ha,,e the orthoqonl ity princpl p1. tenerl 1'.4. I F' h.aC the

converse is also true:

.r~rs n ,. ,2_:. . - If f(yjz satisfies (9.' for all 0l '-. then D11'n,F'". has the.

ortho l-,rialitq priri ple.

proof: Let ,i(:: be the unique solution to Problem A. The Euler-L.-r'.e
equati on is n,-v,' it''- (F'tr))- . +a .y (,) so the conid itinn le f 1 n ;
the c ... /- s -s.T-.I -j(- 'T. s+t..rJ,(.) for sorne constants t- t

Since is data cOnsiStent it fll ows that D" T),=E' 5 T '+ qF "
from '.,.hich ,e conclude that ['R,T) and D(',T) are simultareously
mirni rri,.ed. But . . -._ I-, ni e . But D,' , . <--D,' T) unless T=,I.

We see from (9) that f(y,z) contains terms that involve only z; these
terms, vhen they appear in D(Q,P), will involve only the prior P, and not
the unknown Q. It would seem artificial if D(Q,P) has the orthogonalit y

principle, but the distance obtained from D(Q,P) by omitting the terrs
that do not involve Q does riot. In fact, we can characterize the MCE in
precisely these terms; f'y,:)=ylog(y/) is essentially the only function
of the form (9) having no terms involving only the variable z.

Lropositi'n -.: If f(y,z) has the form (9) and zj(z) -. (z) -c: = 0 for all z
then D(QP)=Jf(Q.,P) is equivalent to E(Q.P).
proof. From the differential equation for J it follows easily that

a_(ltoa gzl'-7)1 + bz, for sorne constants a and b.

Propsiion -": If D(Q,P> -P r,) has the orthogonality principle then
D(Q.P) is eouivalent 'to least squares: that is. to the distance "Q-P""
hence there is no symmetric distance satisfying condition 5 that obeys
the orthgonality principle.
proof: The symmetry condition and (9) imply that J(y) satisfies the
following differential equation, for each fixed z: ,

It then follo's that J,g) is ouadratic in j. 1
ii

............. ~ - . ...

- -, "



7, T P rt:'nq, rr , t n t ho o f Pu!- q a nd itc.: ."te " o ..

pow er sl-pectra l density f unction u).,, ', from the f initely mny

,a Il-,, .e of It-,: Fourier tratisform, :

r,, f d(/2Ti nx(io, N "

- .nb

The HEM he pr-oposes adopts, as: the estimate of R(,.o), that p--os-iti"-1,ek

functic (on ,) ,sE(',: ) :atisfying the constraints ( 12) for v."ihthe F

E' Qr e nitrop y, flog(I" (w:))d ,o, is r :.:i i e .T he Euler -L g a !:e e u t o

=.gtha-t f-I1EjM ,) must have the form

r-~r-1 7 ./ bn e x p n,.,..',) , ,,[ ,( )

n=-N

where the bn are chosen so as to satisfy (1 .).

#P
Tit does not follow from (13) that there will be a poitv- sltin

Ho~i,-,v, E:Ur proceeds by a-ssuming th~at ,ther e is a positive solution of
fthe f orm (1'. Z), Iand uses tthe Fejer-Riesz theorem ([],p. 231) to rew~rite

th~e solution in the f orm

N ¢
I EN k'11)  aO/ . ne pin )I I". . " .(4"

n=O

where the polynomial A (z) aO+al1-4+...+a3NZ [ has all its roots outside the

unit circle. He then shows that the vector a=(3-aO,..'[ must satisfy the

rmatrix equation P3=7, where R is the N+ I by N.+ I matrix with entries

Fmri =n nm m,n= I,..N+ I, and S=( 1,,,...,OAT  So far everything is Nase

on the assumption that a positive solution ex'ists.

• 'A'



E:ut now' EBurg 5hC', thiat, ir.en the matrix R oLtainc frori the 'nt,

the KR rn ut -S e t suc-h that A has all itOs rcots; outside the unit

circle (that is, a has the ,I-,tu - from w.hi.c.h it
follo''s that the QME' r I'., in (IA) is data consistent. So he has succeeded

in producing a positive, data consistent function. The question still
remairs: ['oes this qMlEM',) actually maxirrize the Burg entropy, arlong.

the claS. of data consistent pover spectral densities?
That it does maxirnize the entropy follov...' from a co.,nsFi det:ctf

the relationship between the entropy and the error of ore-stec' prediction
of a time series from knowledge of its infinite past (see F'aooulis [1.
p.427).

We noted earlier that fy)=(y/z)-log(y/z) gives the HEM, but the
(q) fails tco ha'e c:,cndi t ,r 5. This suggests that, in general, the HMEM

formalism may not lead to a positive sclutio:n: this is the case, for
exarnple, when R is defined on higher dimensional space, or when the
functions g .are rot simply one-dirnensional exponentials.

It also Causes difficulty if, in the problem considered by Burg, the
support of R(w) is [- ,,L instead of 1-71,n], where 0<2<ii. The
polynomial in (17) need not factor as before; all that the Euler-Lagrange
equation requires is that the solution have the fcr (16) over [- , ], so"
the polynomial can be negative for some values of w. There is no
Ouarantee that the function of the form (1.) that is data consistent will
be positive within [-',.

E~urg's rnairurn entropy method (MEM) for recorstructing a positive
function from Fourier transform values is justified is a method for
power spectrum estimation by appealing to the limiting ep,,.ressiorn for

the multivariate entropy of time-domain samples of a Gaussian --n .c...
process. As we have just seen, the maximization of flog(Q(x))dx, subject
to the data constraints, corresponds to the use of j(z)=-iz in (1), hence
has the orthogonality principle. The Euler-Lagrange equation shows that
the MEN solution has the form 6(x)= 1/{ao-+...+aK gK(x), with the a

' chosen so as to make , data consistent. From Proposition 2 we know
that, ;,whenever Q(x) exists, it provides a minimum, among all densities
of its formr, for the distance [[(R/T) -log(R/T)] dx . Thus Q(>) is close to
RF(:.:) in an appropriate sense and the HEM is justified withcut apoe.l to.T

a u s-ian processes.

%
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u,. rurnjar

mnirrii-ation of a distance D( i,' (jf(( ,F- ):d:, sub ect to C sati, si ,-,,
data constraints, where P(.- is a prior estimate of the positive functiocr
to be recovered. We have limited the discision to thos.e f(, :" .21 '1g.
c ertain coridiions c-;  hosen to -,.n ' D(C,F) ,i Pl prorerti s .. t' -.-

O:2-::irlmatilo. The HCE rmethoid, based the chru,-r rf f 2 , , :'. ' -

obeys an orthogonality principle analoqous to that Ioiated vtn
orthcqornal linear projec:tion in Hilbert space, and our otie here

to i nvesti gate the extent to which this orthogonality principle serves
cha.racterize MCE rrong distances of the above forn. ISuch a

characterization would then provide a purely approxirnation theoretic

justification for the MCE procedure.

We hav-e shown that, in order for the distance D(Q.P)zff((,P(Q)t:

to obey the orthogonality principle (as well as the other cionditions) It ;
necessary that fly,,z) have the form

f(yz)= cy -yj(z) + J(y) - .i(z) - Jlz), yz>O, (1 ')

w,.hereJ(y) is a .trictly convex,,,. function with derivative j,,, and c 15

sorre constant. Terms involving z only play no role when D(Q,F) is
minimized as a function of Q; if thoose terms vanish iden l cal tei n .
distance D is equivalent to cross entropy.

Aperdi ,:Proof of ProDnsition 1

If we formally differentiate the equation (7) defining the class T
with respect to the variable t,, for some K 1,...,K, we obtain

.-0+
(a3T'dt)f 11 (' TG.,F'(x))= itc,/Oatk + gp(x.) .(I1,)



I

"7

F>:" and consider s,) as a p.rti a differential e .tn for the fuc .. ' r!:

vie. ed as a function of t..., .... . e rewrite (If) YE

6,,

=T '-it t t + q.. ( )

w,,..,,here h()-z h(y;x- I /f! (y,P'th., Let G(y=G(y;>:) be the (increasing)

anti-derivative of the function h(q); having1 the "constant of ipteqration"
z, L, r_ h -3

P %N

Then the fun ction
K 10

solves the oartial differential equation (10, is equal to 6(x) when the
tkk=a and is bounded above and away from 0, uniformly in x, for

t=t in a neighborhood of a=kal1

For t in some neiohborhood of a the function Tt;,...t K) gi'/en by

?) 'will tie a probabilit. densit. functior, hence the problem of

rnrmilzing C(R,T) over T in T can tie viewed as that of minimizing

D(,T:t)) sub iect to the constraint f Tt) fT(x;t)dx . Forming the
Lacrancian we obtain

o /tk { D(R,T() - X T(t) ta()

or, differentiating under the integral,

If" r ([,, PC.)) , ' (2-Q= I f.1(Rx ' ,Q(x)) -".i[totk t + gri 11~x.F~)}d
0= .[ ' ' = ' .., -' ",)1/f ' ,,' v

' ",t-''- '"- "," ."%"",' ."-J "-.. .,i.'. '.r." '.,%_.,,-%.,", ,'..t .f' ," ,r,.W..'..c,.',..f,,,_.w 'r .'w- -- -,-' "%-.,w. .. ..,,,.. ,,,,..,.,K.,.. , .
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"~ 
if '

.na-..SF f{t[.- ,-,',:{, ' ~ ,,t ) *{ .v (.';,cx "

4.

FroE (2) ul it ?o21 d f " r esr t h any other pdf that is data
t - - i " q"

r .. ,_.,. I >:: is a -p:int ir x.a i F a r e~ ';b rro d oS ¢ ,,eca

e ,jthuu h ol 5 ; - ,ted of R r
R0 p I a U, and tc-thoronel

.. ..J 0 , .) ff + g.,.. .; 1 1

E- n () z - ho d- (if wie re alu S i i thy e  nre of th)a is0. B

adrEl to em"t.If a i a (ssi ninaiy cernt iats awrie h o d th rec

i a bonedgbrho maUbl te fun cto Rat L Fui't on . ardirtoona

t(' ac)o)te o ha.(x)(= oi)o ) i dt consistent d,' . for

nt cnteal is oq then by holds t neighborhoo d U, s e ) zo R1f .

letng o eto z er in 0.' ) e'. re c'anu conclude tatg f , I n ---.

one , a F ntw 3(x).an teniffereni at b aeith est
to rolen: givestotilr h rblt osutt

corechninal y inea con'Ntbnn abon prth gk'., e can assu e that

the intre rnei rtnio od U the funcon(ti/ous zera o Ueighb doe

now n le z Q ) L someivn valu e nlyhinitelyran andut >o ey

addin tor fianarrow Gssani ensit cnteroed atgmn xzx0  and e
corrctin by a liea cobiato ofe thteca ue thrall)y

not hane si ri th ndsr anyh nO th neihoho abutust n

letting s go to zero in 5(x), we can conclude that 2 t t(y,z)O.
*fince we are interested in distances y,- p' that will be aplied t

variety.. of problemrs we are tree to, tailor the protlenn to suit the
technical assumptions needed above. In particular, w;e can assume that
the x are one-dirrnensional, that the gk r otnosinanihoho

of v,0 and assumne a given value only finitely many times. So, except

perhaps for finitely mnany values of x0, the above argument holds and

f..1 1("-.-z fo zz-q>x,) and any y>O. EBut this must be true for all

problerms, so the conclusion then is that f 2 11 must be identically zero, .

for ,rO "44'

4-4' .a- . -'. '.a. ' - --. -... - ta v . : . a a 'C - a . ;P *a .ta ' p ", 2 . ' . 2 , . ; - .%'2 , a'2 " ' 4 " -~ a ' l'" ",
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